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An Inve5tigation of the Standard Errors of Expected A Posteriori

Ability Estimates

ABSTRACT

Expected a posteriori (EAP) has a number of advantages over maximum likelihood estimation

(MLE) or maximum a posteriori (MAP) estimation methods. These include ability estimates

(Os) for all response patterns including zero and perfect score patterns, less regression

towards the mean than MAP ability estimates, and an average squared error that is less than

that for MAP and MLE 6s. Bock and Mislevy (1982) state that the posterior standard deviation

(PSD(0)) is virtually interchangeable with the standard error (SEE). A typical criterion for

terminating an adaptive test is when the g's SEE is equal to or less than a predetermined

value. However, if there are conditions in which the PSD(g) is not interchangeable with the

SEE, then the adaptive test may not be validly terminated. Moreover, in applications where an

examinee must be classified on the basis of his/her ability estimate (e.g., as a master versus

nonmaster) one typically creates a confidence interval about the examinee's ability estimate

using the 6's SEE. The use of the PSD(g) in these situations may lead to incorrect

classifications if the PSD(g) does not agree with the SEE. Results of this Monte Carlo study

showed that the use of 10 quadrature points tends to result in PSD(g)s which underestimate

the observed standard error. The use of 80 quadrature points, given the test's length

(possibly 2 .4 test length quadrature points under certain conditions), is recommended where

accurate PSD(g)s are required.
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Item response theory (IRT) has emerged as a popular approach for solving various

measurement problems, such as test design, test equating, and computerized adaptive testing

(CAT), and IRT techniques are becoming more common in practical testing situations. For

example, certification boards such as the American Society of Clinical Pathologists have

established an IRT-based CAT system for certification (Bergstrom & Lunz. 1991). Unlike the

conventional paper-and-pencil test in which an examinee, regardless of ability, is administered

all test items, CAT is a procedure for administering tests that are individually tailored for each

examinee. Advantages of IRT-based CAT over paper-and-pencil testing have been well

documented (e.g., Wainer, 1990: Weiss, 1982). Although not necessary, a CAT system typically

uses an IRT model in combination with item characteristics to estimate the examinee's ability.

Ability estimation in CAT has typically used one of three methods: maximum likelihood

estimation (MLE) or Bayesian approaches such as maximum a posteriori (MAP, also known as

Bayes Modal Estimate) and expected a posteriori (EAP, also known as Bayes Mean Estimate). The

former two algorithms are iterative techniques, while EAP is noniterative and is based on

numerical quadrature methods. Because it is noniterative (and efficient) it is potentially faster

than either MLE or MAP in ability estimation. The obvious implication of EAP's efficient

estimation for CAT is the transparency (as far as the examinee is concerned) of estimating the

examinee's ability in real time, particularly with more complicated IRT models (e.g., polytomous

IRT models). Moreover, unlike MLE ability estimates, EAP ability estimates may be obtained for

all response patterns, including zero and perfect score patterns (Mislevy & Stocking, 1989).

While MAP ability estimates also exist for all response patterns, they suffer from greater

regression towards the mean than do the EAP estimates (Bock & Mislevy, 1982; Mislevy & Bock,

1982). Moreover, in the early stages of an adaptive test the EAP estimate is more stable than the

MAP estimate and the average squared error for EAP estimates over the population of ability is

less than that for MAP and MLE ability estimates (Bock & Mislevy, 1982). From an

implementation perspective, an additional advantage is the simplicity of the mathematics

required for deriving the computational forms for ability estimation with polytomous IRT models.

The EAP estimate (Bock & Mislevy, 1982) of an examinee's ability, 8, after n items have been

administered is given by

Xk Ln(Xk) A(Xk)

en = k=
Ln(Xk) A(Xk)

k=1



and its posterior standard deviation is

PSD(0)=

(Xk C1)2 Ln(Xk) A(Xk)
k=1

Ln(Xk) A(Xk)
k=1

(2)

4

where Xk is one of q quadrature points, A(Xk) is the quadrature weight associated with Xk, and

Ln(Xk) is the likelihood function of Xk given the response pattern {x 1, x2, ..., xn }. For example, if

the probability of a correct response by an individual with ability 0 to a dichotomously score item i

with location bi is given by the one-parameter logistic (1PL) model

(3)
e(9 bi)

p(xi = 110) =
1 + e(e bi)

then the likelihood of 9 given the response pattern {x 1, x2, xn} is

Ln(8) = p(xi = 110);(i(1 - p(xi = 11E))(1 xi) (4)
i=1

The Xks and A(Xk)s may be obtained from tables provided by Stroud and Secrest (1966) for

approximating the Gaussian error function. The Stroud and Secrest Gauss-Hermite Xks and A(X!.c)s

must be multiplied by 42: and + (Bock & Lieberman, 1970), respectively, in order to place them
rc

on the normal function scale. However, programs, such as BILOG (Mislevy & Bock, 1982), do not use.

the Stroud and Secrest values for EAP ability estimation; neither BILOG nor MULTILOG (Thissen,

1988) use these values for obtaining item parameter estimates via marginal maximum likelihood
estimation (MMLE). Rather, a specified range of the 0 continuum (e.g., -4.0 to 4.0) is divided into q

equidistant discrete points (these points serve as the Xks) and the standard unit normal

probability density is computed at each of the q points. The probability density at Xk multiplied

by the difference between successive quadrature points (e.g., Xk - Xk+i ) is the quadrature weight

A(Xk). Because of the symmetric nature of the discrete prior distribution the A(Xk)s only need to

be calculated for the Xks < 0. (Seong (1990a) refers to this method as the "Mislevy histogram"

technique, although it is probably more accurate to refer to it as the Mislevy "vertical line graph"

method to emphasize the discrete nature of the prior distribution.) Seong (1990a) has compared the

item and ability parameter estimates obtained by using this latter technique with those obtained by

the Stroud and Secrest values. Seong found that when a large number of quadrature points were

used (e.g., 30 or 40) the two methods estimated item and ability parameters equally well, but when

a small number of quadrature points were specified (e.g., 10), the Mislevy histogram solution

estimated item and ability parameters more accurately than the Gauss-Hermite quadrature formula.

It should be noted that Bock and Mislevy (1982) state that the Gauss-Hermite values do not include
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the likelihood functions found in adaptive testing. Moreover, the Xks and A(Xk )s must satisfy the
constraints that A (Xk) = 1.0, X kA( X k ) = 0.0, and X liA(Xk) = 1.0.

Bock and Mislevy's (1982) work showed that EAP produces reasonably accurate ability

estimates. Originally, Bock and Mislevy presented EAP for use in adaptive testing, however in the

calibration program BILOG (Mislevy & Bock, 1982) it is the default ability estimation approach.

In adaptive testing the PSD(4) plays the same role as the MLE's standard error (Bock & Mislevy,

1982). That is, after 20 items the likelihood function and the posterior distribution are nearly
identical and the PSD(6) is virtually interchangeable with the standard error (Bock & Mislevy,

1982); this interchangeability is reflected in zhe fact that the PSD(6)s are labeled as standard

errors in the BILOG EAP output. For consistency with and on the basis of Bock and Mislevy

(1982), the EAP PSD(6) will be referred to as if it were a standard error and will be labeled as

EAP SEE in the following.

A number of studies have investigated the effects of various factors on MMLE item parameter

estimation (e.g., Drasgow, 1989; Harwell & Janosky, 1991; Zwinderman & van der Wollenberg,

1990). Seong (1990b) evaluated both item parameter estimation and EAP ability estimation. With

respect to EAP ds, Seong found that increasing the number of quadrature points from 10 to 20

produced more accurate 6s, regardless of sample size and appropriateness of the prior

distribution (i.e., normal, positively and negatively skewed). Because abilities are estimated

independently of one another it is not surprising that sample size did not have a significant effect
on the accuracy of EAP ds Because of the breadth of Seong's study, the EAP estimation findings

were limited. For instance, test length should affect ability estimation, but was held fixed at 45
items in Seong's study. Moreover, Seong studied the accuracy of the gs in terms of root mean

square error (not EAP SEE), but in applications where an examinee must be classified on the basis

of his/her ability estimate (e.g., as a master versus nonmaster) one typically creates a confidence
interval about the examinee's ability estimate using the 6's SEE. As an example, in the American

Society of Clinical Pathologists' CAT pathologists are presented an adaptive certification test. If

the confidence interval for an examinee falls either completely above or completely below the cut

point, then the examinee may be classified as a master (i.e., certified) or a nonmaster,

respectively. If the confidente interval spans the cut point, then additional information is

needed (e.g., more test questions could be asked). The use of confidence intervals incorporates

our uncertainty about the ability estimate. It should also be noted that in addition to using the
EAP PSD(6) as if it was a standard error, the PSD(4) calculated by (2) is actually an estimate or an

approximation and its use for forming confidence intervals may be problematic if the EAP SEE is

not accurate. Moreover, a typical cfiterion for terminating an adaptive test is when the O's SEE is

equal to or less than a predetermined value. If the EAP SEE is not accurate, then the adaptive tcst
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may not be validly terminated. For these reasons this study was primarily concerned with the

validity of the EAP SEEs.

Because EAP is based on numerical quadrature methods it requires the specification of a

number of factors, such as type of prior distribution and the number of quadrature points to

use in estimation. Each of these factors as well as the test length and the form of the examinees'

latent distribution may affect the accuracy of the EAP ability estimate and the EAP SEE. This

study investigated the effects of the number of quadrature points (10, 2*-4 test length, and 80),

test length (61 and 122 items), latent ability distribution (bimodal, normal, positively skewed,

and uniform), and the form of the prior ability distribution (normal and uniform) on the EAP

SEEs. The 2*4T;Tiength and 80 number of quadrature point levels were chosen because

2*-4 test length is the default value in BILOG for EAP estimation (a normal prior is also default)

and according to Bock and Mislevy (1982, p. 433) "In applications to real populations, perhaps

80 quadrature points between +4.0 standard deviations should be available to insure precision

down to Pc' = 0.2" (although for their simulation they used 21 quadrature points). A bimodal

latent ability distribution was used to simulate an examinee population that consists of masters

and nonmasters, and the rationale for the test lengths is presented below.

METHOD

Program: A program was written for generating simulees, generating the responses for each

simulee, performing ability estimation for each simulee, and compiling various summary

statistics for each simulee as well as across simulees.

Data. For each of the 4 latent distributions, 100 simulees were sampled from the appropriate 0

distribution. Then for each simulee at each combination of test length, prior distribution and

quadrature points, the process of administering a simulated test, as described below, was

repeated 1000 times. The standard unit normal curve was used as the 8 distribution for the

normal condition, a beta distribution (vi = 1.25, v2 = 10) was used to produce the positively

skewed 0 distribution (skew = 1.14), and the uniform 0 distribution was restricted to the range -

3.0 < < 3.0. The bimodal 0 distribution was obtained by generating one-half the sample's

simulees from a beta distribution with vi = 1.25 and v2 = 10 and one-half from a beta distribution

with vi and v/ transposed. Each latent ability distribution had a unique seed for generating its

simulees.

A sixty-one item pool was generated to have uniform difficulty parameters (b) in the range -

3.0 < b < 3.0 in 0.1 logit increments (i.e., bi = -3.0, b2 = -2.9, etc.). The discrimination (a) and

the pseudo-guessing (c) parameters were set at 1.0 and 0.0, respectively. The use of these values

for a and c is discussed below. The 122-item test consisted of the 61-item test replicated and

therefore the 122-item test information function was twice that of the 61-item test.
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For each simulee, responses were generated using the appropriate item parameters, and the

simulee's 0 to calculate the probability of obtaining the item correct according to the 1PL model.

This probability was compared to a random number obtained from a uniform distribution [0,1]. If

the probability was greater than the random number then the simulee's response was 1 (i.e.,

correct), otherwise the simulee's response was incorrect and coded as 0.

After the simulee had been administered a test of the appropriate length an EAP 6 and its

EAP SEE were obtained using the appropriate prior distribution and number of quadrature points.

This process was repeated 1000 times for each simulee (i.e., there were 1000 6s for each of the

100 0 1:1 each of the 48 cells in the design).

Estimation. EAP ability estimates were calculated according to (1) and the EAP SEE was obtained

according to (2). For the three levels of the number of quadrature factor (10, 2*\/ test length, and

80) the Xks and A(Xk)s were determined using the Mislevy "vertical line graph" method described

above for the range -4.0 < 0 < 4.0. For the 61-item test 2*4 test length = 16 and for the 122-item

test 2*4 test length = 23.
Analyses: In addition to obtaining the EAP SEE of El', the standard deviation of the 1000 6s (i.e.,

the empirical SEE) for a given 0 was calculated. The basic design of the study was a four-way

repeated measures design with the difference between the empirical and EAP SEEs (i.e.,

SEEempirical - SEEE p) as the dependent variable, latent ability distribution as the between

subjects factor, and test length, type of prior distribution, and number of quadrature points as

the within subjects factors.

In addition to calculating the empirical SEE, 68% and 95% confidence intervals (CIs) based on

the EAP SEE were calculated and the number of times the 68% and 95% CIs contained 8 were

counted (CI68% and CI95%, respectively). Analysis of the CIs involved calcuiating the difference

between the number of times a given CI contained 0 and the number of times the CI was expected to

contain 0 (i.e., diff68% = CI68% - 680 and diff95% = CI95% - 950). The analyses of diff68% and

diff95% were treated separately. Diff68% and diff95% were used as the dependent variable in a

four-way repeated measures analysis with test length, type of prior distribution, and number of

quadrature points as the within subjects factors and latent ability distribution as the between

subjects factor.

The accuracy of ability estimation was assessed by root mean square error (RMSE) and Bias.

RMSE and Bias were calculated according to:

(Ok )2
A

RMSE(0) = ( 5 )

A

Bias(0) =
(Ok 0 )

( 6 )
Nk
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A

where Ok is the ability estimate for simulee k with latent ability 0, and N is the number of

replications for simulee k (i.e., Nk = 1000). RMSE was used as the dependent variable in four-way

repeated measures analysis with within subjects factors of test length and number of quadrature

points, type of prior distribution, and latent ability distribution as the between subjects factor.

The analysis of Bias was treated similarly. Descriptive statistics were calculated on the Os and 6s

as well as on the EAP and empirical SEEs, the difference between SEEs, CI68% and CI95%.

Fidelity coefficients (re (4) were obtained.

To summarize, the effect of the four factors (latent ability distribution, prior distribution,

test length, and number of quadrature points) on the EAP and empirical SEEs was investigated

using a four-way repeatA measures design for SEE. The two CIs were each analyzed using a four-

way repeated measures analysis with diff68% and diff95% as the dependent variables. Accuracy

of ability estimation was assessed using a four-way repeated measures analysis with RMSE and

Bias as the dependent variables. Because of its relaxed assumptions a multivariate approach was

used for all repeated measures analyses.

RESULTS'

Tables 1 and 2 contain the descriptive statistics on the Os and 6s as well as the re 6 . As

can be seen from Table 1, increasing the number of quadrature points from 10 to 2*4 test length

and to 80, resulted in the mean and median 6 becoming more similar to the mean and median 0,

respectively, regardless of latent distribution, prior distribution, and test length level.

Table 2 shows that the re 6 also increased as the number of quadrature points increased from

10 to 80 nodes regardless of latent distribution, prior distribution, and test length level.
However, these increases in re I!) may not be considered meaningful by some because of the

magnitude of the re 6 at the 10 quadrature point level.

Insert Tables 1 and 2 about here

Descriptive statistics on the empirical and EAP SEEs are presented in Table 3. This table

shows that increasing the number of quadrature points led to a decrease in the mean empirical

SEEs regardless of test length, prior distribution, and latent distribution. As would be expected,

doubling the test length led to a decrease in the average SEEs for all levels of the number of

quadrature points factor. Furthermore, for a given latent and prior distribution the mean

empirical SEE for the 10 quadrature point leve1/122-item test length was, typically,

approximately the same size as the average SEE for the 16 quadrature point level/61-item test

length and in certain conditions less than those for the 80 quadrature point level at the shorter

test length. In general, as the number of quadrature points increased the average empirical SEEs

decreased. In contrast, the EAP SEEs showed the opposite pattern with respect to increasing the

number of quadrature points. Specifically, increasing the number of quadrature points led to an

10
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increase in the mean EAP SEEs. A comparison of the EAP and empirical SEEs shows that,

regardless of test length, latent and prior distribution, the mean EAP SEEs for the 2*-q te st length

and 80 quadrature point levels had a tendency to be in good agreement with the mean empirical

SEEs. However, the average EAP SEEs tended to underestimate the mean empirical SEEs when 10

quadrature points was used for estimation, but as the number of quadrature points increased the

EAP SEEs and empirical SEEs came into closer agreement. As was the case with the empirical

SEEs, doubling the test length had die expected effect of decreasing the average EAP SEEs. The

discrepancy between the EAP and empirical SEEs was greatest for the positively skewed latent

ability distribution.

Insert Table 3 about here

The descriptive statistics on CI68% and CI95% are presented in Table 4. Given the SEE

results it is not surprising that the CI68% and CI95% were affected by the number of quadrature

points. It is only when 80 quadrature points were used for ability estimation that the CI68% and

CI95% approximated their expected values of 680 and 950, respectively, regardless of test length,

prior and latent distributions.

Insert Table 4 about here

Table 5 contains the descriptive statistics on RMSE(0) and Bias(0). For the normal, positively

skewed, and uniform latent distributions increasing the number of quadrature points from 10 to
A

80 nodes led to more accurate 0 on average. However, for the bimodal condition there was a slight

increase in the mean RMSE(0) as the number of nodes increased from 2*4 test length to 80. For a

given number of quadrature points and independent of the latent and prior distributions,

doubling the test length resulted in a decrease in the average RMSE(0).

The mean Bias(0) values tended to about 0.0 (range of -0.074 to 0.021) and inspection of the

corresponding histograms showed that these distributions tended to be somewhat unimodal and

symmetric about 0.0. There were five instances of bimodal distributions (3 associated with the

bimodal and 2 with the uniform latent ability distributions) and these occurred with the use of a

normal prior. Table 5 also shows that there was a slight underestimation Bias(0) for the bimodal

and positive skew 0 distributions and, in general, a slight overestimation for the normal and

uniform latent ability distributions. The standard deviations of Bias(0) were correspondingly

small and decreased with increasing number of quadrature points indicating that the average

Bias(0) value was a "typical" Bias(0) value and not atypically low because of the compensation that

takes place in its calculation (see (6)).

Insert Table 5 about here
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The repeated measures an.11yses on the SEE. difference are presented in Table 6. As can be

seen the magnitude of the difference between the EAP and empirical SEEs was affected by type

of the latent distribution, the teit length, and the type of prior distribution as well as the

number of quadrature points used in estimation. Post hoc analyses on the SEE difference (Table

7) showed that for the bimodal and uniform latent distribution conditions increasing the

number of quadrature points from 2 *"\I test length to 80 did not result in a significant

improvement in the agreement between the EAP and empirical SEEs. This was also true for the

normal and positively skewed e distributions, but only for the 122-item test. However, the use

of the 61-item test with these two 8 distributions showed that increasing the number of

quadrature points from 2 *\I test length to 80 did result in a significant improvement in the

agreement between the EAP and empirical SEEs. It should be noted that the disagreement

between EAP and empirical SEEs for the normal and positively skewed 8 distributions using a

61-item test with 2 *\I test length quadrature points is less than 0.044 (Table 3).

Insert Tables 6 and 7 about here

Table 7 also shows that for EAP estimation based on 80 quadrature points and a uniform prior

listribution doubling the test length did not result in a significant improvement in the agreement

between EAP and empirical SEEs. This pattern held for the normal prior except for the uniform

latent distribution condition where the test statistic was marginally significant. The use of
2 test length quadrature points, a uniform prior, and 122-item test produced significantly

greater agreement between the EAP and empirical SEEs for all latent ability distributions. There

was not as clear a pattern for the other conditions and while it was expected that when the prior

distribution matched the latent ability distribution there would be better agreement between the

EAP and empirical SEEs than when there was a mismatch, this 7a*.tern did not appear. It should

be noted that the magnitude of the SEE differences were comparatively small for the 2 *NI test length

and 80 quadrature point conditinns (i.e.; discrepancies in the hundreds and thousandths) and

only at 10 quadrature points were these discrepancies occurring at the first decimal place. In

this regard as well as with respect to the power of the tests, some of the significant post hocs may

not be considered meaningful by some.

Figure 1 contains the test length by quadrature pHnts by prior distribution interaction plot

for each latent ability distribution. The plots clearly show (a) the convergence of empirical and

EAP SEEs as the number of quadrature points increased; (b) for all 8 distributions the SEEs for

the 122-item test were less than those for a test half as long for a given quadrature point, prior

distribution and type of SEE (i.e., empirical or EAP) level; and (c) for a given quadrature point

level and for a SEE type, thc use of a uniform prior resulted in larger values than the use of a



normal prior at the 61-item test length (this difference appeared to disappear at the 122-item

test length).

Insert Figure 1 about here

Table 8 contains the repeated measures analyses for the confidence intervals. For diff68% all

first-order interactions and the latent ability distribution by test length by number of

quadrature points interaction were significant, whereas for diff95% the four-way interaction of

latent ability distribution, test length, number of quadrature points, and type of prior

distribution was significant.

Insert Table 8 about here

Post hoc analysis of the effect of type of prior distribution used in estimation on diff68%

(Table 9) showed that for a given test length the use of a uniform prior distribution, rather than a

normal prior, led to significantly better agreement between the average number of 68% CIs

containing 0 and their expected value of 680. However, for a given prior distribution doubling the

test length led to a significant increase in the mean number of 68% CIs not containing 0.

Inspection of Table 4 showed that these significant results were associated with poorer

performance (i.e., lack of agreement between the number of 68% CIs containing 9 approaching

their expected value of 680) at the 10 quadrature point level for the I22-item test than at the 61-

item test length, regardless of the prior and latent ability distribution. When the number of

quadrature points is increased from 10 to 2 *4 test length or greater, then doubling the test

length produces better agreement between the number of 68% CIs containing 0 approaching their

expected value of 680 at all levels of prior and latent ability distribution. Moreover, although for

a given prior distribution increasing the number of quadrature points led to significant

improvement, only when 10 quadrature points were used for estimation was the choice of prior

distribution relevant. For instance, the use of 10 quadrature points resulted in significantly

better agreement between the average number of 68% CIs containing 0 and their expected value of

680 when a uniform prior distribution was used instead of a normal distribution. However, when

80 quadrature points were used for EAP estimation the mean diff68% when a normal prior was

used was -0.808 and for a uniform prior it was 0.518 and the choice of prior was irrelevant.

While at the 2 *-q test length level there was no significant difference for type of prior
distribution, there were, on average, 59..71 fewcr 068% not containing 0 than would be expected

when a normal prior was used and when a uniform prior was used the mean diff68% was -55.80.

Therefore, only at the 80 quadrature point level was the number of C168% containing

approaching the expected value of 680.



Insert Tables 9 and 10 about here

Analysis of the CI95% (Table 10) showed that increasing the number of quadrature points

from 10 to 2 *1,1 test length resulted in significantly more 95% CIs approaching their expected

value of 950 regardless of test length, type of prior distribution, and 9 distribution. In addition,

increasing the number of quadrature points from 2 *4 test length to 80 led to a significant

reduction in the mean diff95% for the 61-item test with the use of a normal prior for all latent

ability distributions. This was also true when a uniform prior was used with a 61-item test and

when the 0 distributions were normal or positively skewed. While there was not a significant

difference between the increase from 2 *g test length to 80 quadrature points for certain

conditions (e.g., uniform 9 distribution, 122-item test length), a comparison with Table 4 showed

that the magnitude of the mean difference for these nonsignificant cells was, at most, 1.9 (the

uniform 9 distribution, uniform prior, 122-item test length cell). That is, for these

nonsignificant cells and when 80 quadrature points were used for estimation there were, on

average, 1.9 95% CIs that did not contain 9 and overall there were at most 3.6 95% CIs that did not

cover the parameter. Therefore, while the difference between 2 *4 test length and 80 quadrature
points may not be significant, in practice the number of CIs which contain 0 when 80 as oppose to

2 *g test length quadrature points were used for estimation may be considered meaningful by

some. For CI68% and using 80 quadrature points for estimation there were at most, on average,

7.2 68% CIs that did not include 0 (Table 4).

Table 11 contains the repeated measures analyses for RMSE(0) and Bias(0). These

results showed that the second-order interactions for RMSE(0) were significant, while Bias(0)

was affected by the interaction of 0 distribution, test length, number of quadrature points,

and type of prior distribution used. Post hoc analyses for RMSE(0) (Table 12) revealed that

there was not a significant interaction between type of prior distribution and the number of

quadrature points within latent ability distribution. In general, increasing the number of

quadrature points from 10 to 2 *q test length and from 10 to 80 led to a significant reduction

in the mean RMSE(0), but increasing from 2 *NI test length to 80 quadrature points did not
A

result in significantly more accurate Os, regardless of 0 distribution (cf., Table 5). The use of

a uniform prior instead of a normal prior led to a significant increase in the average RMSE(0),

however, the magnitude of these increases may not be considered meaningful by some

individuals (e.g., for the bimodal, normal, positive skew, and uniform 0 distributions the mean

RMSE ( 0) were 0.2265 (normal) vs 0.2334 (uniform), 0.2554 (normal) vs 0.2622 (uniform),

0.2731 (normal) vs 0.2806 (uniform), and 0.2485 (normal) vs 0.2544 (uniform), respectively).

Insert Table 11 about here
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The analysis of the quadrature points by test length within 0 distribution interaction

showed a significant quadrature points by test length interaction. For all levels of the

quadrature points factor increasing the test length from 61 to 122 items produced
A

significantly more accurate Os, regardless of latent ability distribution. For all latent ability

distributions, except for the positive skew 0 distribution, increasing the number of

quadrature points from 10 to 2 '''1 test length and from 10 to 80 led to a significant reduction

in the mean RMSE(0), but increasing from 2 *4 test length to 80 quadrature points did not
A

result in significantly more accurate Os, regardless of 0 distribution and test length.

Insert Table 12 about here

Within latent ability distribution there was not a significant test length by type of prior

distribution interaction. As was the case with the quadrature points by test length within 0

distribution interaction, doubling the test length led to a significant rejuction in the average

RM S E(0) for all 8 distributions. Furthermore and similar to the prior distribution by the number

of quadrature points within latent ability distribution interaction, the use of a uniform prior

instead of a normal prior led to a significant increase in the average RMSE(0), regardless of latent

ability distribution.

There was a significant number of quadrature points by test length interaction for both

normal and uniform prior distributions. Increasing the test length from 61 to 122 items

produced a significant reduction in RMSE(0) for all levels of the number of quadrature points

factor, regardless of type of prior distribution used in ability estimation. For both types of prior

distributions, increasing the number of quadrature points from 10 to 2 "1,/ test length and from 10

to 80 led to a significant reduction in the mean RMSE(0), but increasing from 2 *-\/ test length to
A

80 quadrature points did not result in significantly more accurate Os .

Post hoc analyses of Bias(0) are presented in Table 13. As can be seen all significant

differences amongst the levels of the number of quadrature, points factor occurred when a 61-item

test was used and were reflective of a reduction in the average Bias(0) at the larger number of

quadrature points level from the mean Bias(0) at the lower number of quadrature points level (cf..

Table 5). Similarly, the significant differences between the 61- and 122-item tests were

produced by Bias(0) for the 122-item test being less than that for the 61-item test.

Insert Table 13 about here

CONCLUSIONS AND DISCUSSION

While it may be argued by some that varying a and c is more realistic with respect to actual

testing situations, this study used a 1PL model because it was considered to avoid a number of

confounding issues and needlessly complicate the study. A thought-experiment may be sufficient
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to consider what may occur using models with varying item discrimination (as) and/or the

pseudo-guessing parameter (cs). If a is allowed to increase from the study's value of 1.0, then

given the inverse relationship between information (I(0)) and SEE the EAP SEEs would become

smaller than those obtained in this study. However, because of the greater information available
A

for ability estimation, the Os would become more stable and the empirical SEE would also

decrease. In short, the discrepancy between the EAP and empirical SEEs at 10 quadrature points

would still exist. The use of items with low as is not considered meaningful because in practice

items with low as are not considered desirable (i.e., most psychometrician prefer to use items

which discriminate well and to increase I(0) rather than to decrease it). Using slightly less

informative items than used in the study, say 0.8 < a < 1.0, would increase the EAP SEE. However,
A

these same items would make the Os comparatively less accurate and thereby increase the

empirical SEEs. The discrepancy between the EAP and empirical SEEs would still remain.

Allowing c to increase from the study's value of 0.0 would have a similar impact. When c > 0.0

the location of maximum I(0) simply shifts to be higher than the item's difficulty value (b) and

lowers the amount of information available for estimation. Therefore, with increasing c the

variance and standard error of estimation increase. There are two possible scenarios with

scenario 1 requiring an assumption. Scenario 1 requires one to assume that by increasing c and

thereby decreasing the information available for ability estimation it is possible to still obtain
A

reasonably stable and accurate Os (and not increase the empirical SEE). If this is true, then

conceivably there is a value of c > 0.0 that will sufficiently increase the EAP SEE so that it agrees

with the empirical SEE. That is, the goal is to construct a test using items that examinees have a

large probability of correctly answering without knowing the correct answers (i.e., guessing) and
A

still obtain accurate Os for those examinees. Scenario 2 is that increasing c and thereby
A

decreasing the information available for ability estimation results in unstable and inaccurate Os .

This instability and inaccuracy is reflected in a larger empirical SEE than would be obtained if c

= 0.0. Therefore, there is no c which will sufficiently increase the EAP SEE so that it agrees with

the empirical SEE because as c increases so does the empirical SEE. It is this latter issue which

also addresses the use of "reasonable" cs of say, less than 0.25.

To summarize the results of our thought experiment, any nonzero c or a value of a < 1.0 will

increase the empirical and EAP SEEs. Increasing a will decrease the EAP and empirical SEEs. In

all cases the discrepancy between the EAP and empirical SEEs that was observed at 10 quadrature

points will continue to exist.
As mentioned above, Bock and Mislevy (1982) state that the PSD(6) is virtually

interchangeable with the standard error after about 20 items. Part of the support for this

statement comes from their adaptive test simulation results which were based on the use of 21

quadrature points for estimation. This study showed that considering the PSD(6) to be
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interchangeable with the standard error is questionable even with 122 items if the number of

quadrature points is 10; given the trend in the data (see Figure 1) this is probably also true for

less than 10 quadrature points. As the number of quadrature points increase it appears that

considering PSD(g) to be interchangeable with the standard error is reasonable. For example,

given that RMSE = 4 SEE2 + Bias(0)2, the agreement between the observed mean RMSE(0) with the

mean RMSEs based on the EAP and empirical SEEs was assessed (Table 14). As can be seen, when

the number of quadrature points is 80 there is very good agreement between the observed mean

RMSE(0) and the RMSEs calculated on the basis of either the EAP SEE or the empirical SEE.

Insert Table 14 about here

This studied showed that when the purpose of assessment is to rank-order examinees in terms

of ability, the use of 10 quadrature points provides very good agreement (i.e., rot)) between the
A

EAP Os and their corresponding Os for symmetric distributions. If there is reason to suspect that

the latent ability distribution is skewed, then the use of 2 *11 test length quadrature points may
A

be called for. More accurate Os (i.e., in terms of RMSE(0) and Bias(0)) may be obtained by

increasing the test length as well as the number of quadrature points. Furthermore, Table 5

showed that for a fixed test length the accuracy (mean RMSE(0)) may be increased simply by

increasing the number of quadrature points from 10 to 80. For example, the use of 80 quadrature

points with a 61-item test produced RMSE(0)s that were less than those of a test twice as long, but

using 10 quadrature points for estimation.

Given the SEE difference, the diff68% and diff95%, and the RMSE = 4 S EE2 + Bias(0)2

relationship analyses, it appears that the use of 10 quadrature points tends to result in EAP
A

SEE(0)s which underestimate the observed standard error. These SEEs give the false
A

impression that the 0 is being estimated more accurately than, in fact, it is. Creation of

confidence intervals will be erroneously narrower than what they should be and classification

decisions based on such CIs will potentially be incorrect. For instance, examinees may be

classified as masters (e.g., certified) because their (erroneously narrow) CIs fall above the

standard. In these applications it is necessary to increase the number of quadrature points

used in EAP estimation. A conservative approach would be to use 80 quadrature points

because, overall, this level provided the best agreement between the CIs and their expected

values. Clearly, there are situations where the use of 2 *4 test length quadrature points may

be reasonable given the test's length, the type of prior distribution used, and knowledge of O's

distribution.
When a CAT using EAP ability estimation is terminated using the standard error criterion, it

appears necessary to use about 80 quadrature points if the adaptive test will be validly

terminated, regardless of latent 0 distribution. This is also true if the EAF' SEE will be used to

1"t
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estimate the reliability coefficient; Bock & Mislevy (1982) state that 1 - PSD(6)2 is the

reliability coefficient for the EAP 6. If it is reasonable to assume a bimodal or uniform

distribution, then the use 2 *q test length quadrature points with a normal prior distribution

appears to be sufficient for accurate EAP SEEs. However, because of the interaction between test

length, number of quadrature points, and EAP SEE, shorter length tests may require greater than
2 *"\I test length number of quadrature points to obtain accurate EAP SEEs. Given the observed

re ts with 10 quadratvre points it may be permissible to use 10 quadrature points in nonadaptive

testing situations if the EAP SEE will not be used.
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Table 1: Descriptive statistics on tls and 8s.

Latent 0

Distribution Prior

6 1

Quadrature

1 0 1 6

Test Length

1 2 2

Points Quadrature Points

8 0 1 0 2 3 8 0 8

Bimodal Normal Mean -0.026 -0.011 -0.001 -0.019 -0.001 -0.001 0.000
Median -0.619 -0.405 -0.296 -0.729 -0.329 -0.314 -0.308
SD 0.998 0.964 0.951 1.018 0.981 0.978 1.056
Skew 0.265 0.234 0.220 0.296 0.221 0.220 0.220

Uniform Mean -0.026 -0.010 -0.001 -0.021 -0.001 -0.001
Median -0.620 -0.414 -0.313 -0.729 -0.338 -0.323
SD 1.052 1.021 1.010 1.048 1.011 1.008
Skew 0.259 0.234 0.221 0.285 0.221 0.220

Normal Normal Mean -0.068 -0.07 2 -0.074 -0.067 -0.07 6 -0.07 6 -0.079
Median -0.041 -0.026 -0.017 -0.042 -0.092 -0.014 -0.010
SD 1.002 0.943 0.924 1.037 0.954 0.949 0.977
Skew 0.025 0.010 0.006 0.002 0.014 0.002 0.005

Uniform Mean -0.074 -0.077 -0.079 -0.07 0 0.079 -0.079
Median -0.041 -0.0 26 -0.01 8 -0.042 0.089 -0.015
SD 1.054 1.004 0.987 1.064 0.986 0.980
Skew 0.021 0.014 0.012 -0.001 0.015 0.005

Positive Skew Normal Mean -0.055 0.0 1 0 0.010 -0.060 0.002 0.011 0.014
Median -0.361 0.229 0.156 -0.488 -0.212 -0.158 0.156
SD 0.826 0.745 0.716 0.860 0.740 0.734 0.754
Skew 0.854 1.056 1.141 1.157 1.156 1.143 1.157

Uniform Mean -0.04 6 -0.006 0.012 -0.053 0.004 0.012
Median -0.361 -0.233 -0.164 -0.488 -0.215 -0.163
SD 0.860 0.790 0.763 0.876 0.764 0.758
Skew 0.916 1.094 1.169 0.874 1.168 1.157

Uniform Normal Mean -0.178 -0.182 -0.185 -0.185 -0.192 -0.193 -0.199
Median -0.733 -0.520 -0.429 -0.792 -0.432 -0.430 -0.438
SD 1.606 1.595 1.591 1.652 1.642 1.641 1.695

Skew 0.174 0.181 0.184 0.173 0.181 0.182 0.180

Uniform Mean -0.193 -0.197 -0.199 -0.193 -0.200 -0.200
Median -0.734 -0.537 -0.454 -0.792 -0.444 -0.443
SD 1.733 1.723 1.717 1.721 1.708 1.706
Skew 0.169 0.175 0.178 0.170 0.178 0.178
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Table 2: Fidelity coefficients.

Latent 0

Distribution Prior 10

61

Quadrature Points

80

Test Length

Quadrature

1 0

1"
Points

2*111engtha 2*"Vlengtha 8 0

Bimodal Normal 0.9910 0.9990 1.0000 0.9865 0.9998 1.0000

Uniform 0.9935 0.9993 1.0000 0.9886 0.9998 1.0000

Normal Normal 0.9835 0.9978 0.9999 0.9765 0.9994 1.0000

Uniform 0.9877 0.9984 0.9999 0.9793 0.9995 1.0000

Positive Skew Normal 0.9749 0.9961 0.9999 0.9587 0.9987 0.9999

Uniform 0.9798 0.9971 0.9999 0.9620 0.9989 0.9999

Uniform Normal 0.9975 0.9997 1.0000 0.9960 0.9999 1.0000

Uniform 0.9983 0.9998 1.0000 0.9966 0.9999 1.0000

alength= test length
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Table 3: Mean EAP, Empirical, and Difference SEEsa

Latent 0

Distribution Prior SEEa

Test Length

6 1 1 2 2

Quadrature Points Quadrature Points

1 0 2*41engthb 8 0 1 0 2*4-1er-igthb 8 0

Bimodal Normal Emp 0.248 0.227 0.232 0.202 0.166 0.169

EAP 0.160 0.225 0.239 0.093 0.167 0.171

Diff 0.087 0.003 -0.007 0.108 -0.001 -0.003
Uniform Emp 0.263 0.243 0.247 0.209 0.172 0.174

EAP 0.175 0.234 0.246 0.098 0.170 0.174

Diff 0.038 0.008 0.001 0.111 0.002 0.000

Normal Normal Emp 0.302 0.249 0.234 0.236 0.178 0.170

EAP 0.155 0.224 0.240 0.081 0.166 0.172

Diff 0.147 0.025 -0.007 0.155 0.01/ -0.002
Uniform Emp 0.314 0.263 0.250 0.240 0.184 0.176

EAP 0.167 0.234 0.248 0.084 0.169 0.175

Diff 0.147 0.029 0.002 0.157 0.015 0.001

Positive Skew Normal Emp 0.343 0.263 0.234 0.268 0.176 0.170

EAP 0.152 0.222 0.239 0.076 0.162 0.171

Diff 0.191 0.041 0.0 0 6 0.192 0.013 -0.002
Uniform Emp 0.353 0.275 0.249 0.273 0.181 0.175

EAP 0.162 0.231 0.247 0.079 0.166 0.174

Diff 0.191 0.044 0.002 0.194 0.015 0.001

Uniform Normal Emp 0.275 0.245 0.240 0.234 0.180 0.177

EAP 0.203 0.244 0.250 0.120 0.178 0.181

Diff 0.072 0.001 -0.010 0.114 0.002 -0.004
Uniform Emp 0.303 0.272 0.266 0.248 0.190 0.187

EAP 0.224 0.259 0.263 0.130 0.183 0.186

Diff 0.079 0.013 0.002 0.118 0.007 0.002

aEmp = SEEempirical. EAP = SEEEAP. Diff = (SEEem-pirical - SEEEAP) ; blength= test length
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Table 4: Descriptive statistics on 68% and 95% confidence intervalsa

Latent 0

Test Length
6 1 122

Quadrature Points Quadrature Points

Distribution Prior 1 0 2*Vrengthb 8 0 I 0 2*41engthb 8 0

68% confidence interval
Bimodal Normal Mean 335.5 663.8 679.4 177.1 675.9 686.9

SD 214.2 156.0 44.0 132.2 85.8 34.9

Uniform Mean 372.6 658.0 684.5 186.0 675.7 686.1
SD 230.5 143.5 44.2 135.6 75.8 35.4

Normal Normal Mean 289.5 582.6 685.1 120.1 609.5 684.8
SD 224.6 209.0 49.0 118.1 166.0 41.1

Uniform Mean 305.2 586.1 684.0 136.4 615.7 677.4
SD 237.0 205.8 44.3 130.5 166.3 42.8

Positive Skew Normal Mean 238.0 540.1 677.6 103.9 608.1 685.9
SD 203.7 228.6 51.7 134.6 185.0 43.4

Uniform Mean 269.9 543.5 672.8 113.8 610.3 680.7
SD 236.0 221.1 52.6 147.9 186.8 39.9

Uniform Normal Mean 434.1 630.0 664.3 242.8 652.3 669.8
SD 236.8 138.0 57.1 148.1 111.0 40.0

Uniform Mean 463.1 649.6 675.8 263.7 654.8 682.8
SD 234.4 135.3 51.0 153.2 114.4 38.7

95% confidence interval
Bimodal Normal Mean 496.9 904.6 948.8 280.6 934.7 950.2

SD 248.5 113.1 16.5 1e7.3 71.6 11.5

Uniform Mean 549.6 918.0 950.8 291.0 935.0 950.1
SD 254.3 105.3 13.0 184.5 71.2 11.0

Normal Normal Mean 413.2 844.7 949.6 208.8 868.7 948.7
SD 271.5 173.5 16.0 181.6 159.3 15.7

Uniform Mean 458.0 858.0 948.5 225.1 872.6 948.9
SD 292.1 166.0 15.7 189.6 153.8 14.7

Positive Skew Normal Mean 345.4 788.7 952.3 176.9 881.8 947.8
SD 243.3 207.6 16.0 178.0 145.4 16.3

Uniform Mean 380.0 808.7 948.3 188.3 884.5 946.4
SD 271.1 201.2 15.3 183.0 144.8 15.5

Uniform Normal Mean 634.3 893.7 935.0 383.3 919.8 942.5
SD 261.6 122.6 27.5 210.0 87.2 15.3

Uniform Mean 676.4 913.2 949.3 411.0 925.6 948.1
SD 268.3 124.3 14.4 209.6 88.4 9 '

aSD=standard deviation; blength= test length



Table 5: Descriptive statistics on RMSE(0) and Bias(0)a.

Latent 0

Distribution Prior
Quadrature

1 0

6 1

Test Length

Points Quadrature

1 0

1 22
Points

2*V lengthb 8 0 2*41engthb 8 0

RMSE(0)
Bimodal Normal Mean 0.282 0.235 0.238 0.265 0.169 0.171

SD 0.122 0.044 0.009 0.137 0.020 0.006
Uniform Mean 0.293 0.246 0.247 0.267 0.173 0.174

SD 0.114 0.040 0.008 0.135 0.019 0.005

Normal Normal Mean 0.352 0.258 0.239 0.328 0.183 0.172
SD 0.186 0.070 0.016 0.207 0.042 0.011

Uniform Mean 0.361 0.270 0.250 0.330 0.187 0.176
SD 0.177 0.065 0.013 0.204 0.041 0.010

Positive Skew Normal Mean 0.400 0.272 0.237 0.379 0.180 0.171
SD 0.206 0.079 0.013 0.228 0.042 0.010

Uniform Mean 0.410 0.284 0.249 0.382 0.185 0.175
SD 0.195 0.074 0.011 0.225 0.040 0.009

Uniform Normal Mean 0.311 0.267 0.261 0.280 0.188 0.185
SD 0.121 0.051 0.032 0.142 0.029 0.020

Uniform Mean 0.321 0.275 0.267 0.284 0.192 0 188
SD 0.115 0.049 0.028 0.137 0.030 0.021

Bias(0)
Bimodal Normal Mean -0.026 -0.011 -0.001 -0.019 -0.001 -0.001

SD 0.135 0.060 0.055 0.167 0.031 0.028
Uniform Mean -0.026 -0.010 -0.001 -0.021 -0.001 -0.001

SD 0.127 0.042 0.009 0.161 0.019 0.007

Normal Normal Mean 0.011 0.007 0.005 0.012 0.003 0.003
SD 0.181 0.072 0.054 0.226 0.041 0.029

Uniform Mean 0.005 0.002 0.000 0.009 0.000 0.000
SD 0.177 0.062 0.014 0.225 0.033 0.009

Positive Skew Normal Mean -0.070 -0.024 -0.005 -0.074 -0.012 -0.003
SD 0.191 0.067 0.040 0.254 0.040 0.023

Uniform Mean -0.060 -0.020 -0.002 -0.067 -0.011 -0.002
SD 0.193 0.069 0.014 0.255 0.037 0.009

Uniform Normal Mean 0.021 0.016 0.014 0.014 0.007 0.006
SD 0.147 0.108 0.105 0.156 0.057 0.055

Uniform Mean 0.006 0.002 0.000 0.006 -0.001 -0.001
SD 0.108 0.046 0.027 0.142 0.026 0.015

aSD=standard deviation; blength= test length
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Table 6: Repeated Measures Analysis of SEE difference (SEEempirical - SEEasymptotic)

Source VI V2

Latenta 3 396 13.26**

Lengthb 1 396 5.51*

QuadPtsc 2 395 716.30**

Priord 1 396 363.67**

Latent X Length 3 396 18.51**

Latent X QuadPts 6 790 8.38**

Latent X Prior 3 396 25.40**

Length X QuadPts 2 395 48.39**

Length X Prior 1 396 188.15**

QuadPts X Prior 2 395 164.55**

Latent X Length X QuadPts 6 790 11.47**

Latent X Length X Prior 3 396 30.05**

Latent X QuadPts X Prior 6 790 14.67**

Length X QuadPts X Prior 2 395 236.59**

Latent X Length X QuadPts X Prior 6 790 16.25**

aLatent Distribution; bTest Length; c/lumber of Quadrature Points;

dPrior Distribution; * p < 0.05, ** p < 0.01
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Table 7: Post Hoc Analyses (t-tests) for SEE difference (SEEempirical - SEEEAP).

Latent e

Distribution Hypotheses

Prior Distribution

Normal Uniform

Test Length Test Length

6 1 122 6 1 1 2 2

Bimodal P10 vs P-2*q length 12.58** 16.16** 11.82** 16.25**

P-10 vs 1-1-80 13.94** 16.49** 12.93** 16.53**

11241ength vs 1180 1.36 0.32 1.11 0.28

Normal P10 vs11241ength 11.35** 13.20** 10.96** 13.23**

1110 vs 1180 14.27** 14.58** 13.56** 14.54**

112*qlength vs 1180 2.92** 1.37 2.59** 1.30

Positive 1110 v5 112*4 length 12.28** 14.70** 12.17** 14.85**

Skew P-10 vs P.80 16.15** 15.92** 15.68** 16.01**

112*qlength vs P-80 3.86** 1.22 3.51** 1.16

Uniform P-10 vs11241ength 9.53** 14.98** 8.99** 15.08**

P-10 vs 1.180 11.05** 15.72** 10.45** 15.80**

P-2*qlength vs P-80 1.52 0.74 1.46 0.72

Latent Distribution

Prior Quadrature Positive

Distribution Pointsa Hypotheses Bimodal Normal Skew Uniform

Normal

Uniform

1 0

2*'\H-j-Igth

8 0

1 0

2*glength

8 0

P.61 vs 111 2 2

P.61 vs 111 2

-6.01** -1.8 3 -0.2 8 -12.39**

0.91 3.03** 6.40** -0.26

-1.10 -1.0 2 -0.9 1 -1.98*

-6.89** -2.43** -0.7 8 -12.37**

1.98* 3.75** 6.84** 2.07*

0.31 0.24 0.16 0.31

alength- test length; * p < 0.05, ** p < 0.01
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Table 8: Repeated Measures Analysis of diff68% and diff95%.

2

Source vi V2 Fdiff68% Fdiff95%

Latenta 3 396 21.41** 28.70**

Lengthb 1 396 149.38** 288.73**

QuadPtsc 2 3 9.5 1134.64** 1339.62**

Priord 1 396 34.76** 209.88**

Latent X Length 3 396 4.28** 757**

Latent X QuadPts 6 790 12.38** 15.84**

Latent X Prior 3 396 2.71* 3.65*

Length X QuadPts 2 395 263.00** 443.28**

Length X Prior 1 396 6.17* 71.18**

QuadPts X Prior 2 395 26.14** 82.90**

Latent X Length X QuadPts 6 790 2.17* 5.10**

Latent X Length X Prior 3 396 0.51 1.04

Latent X QuadPts X Prior 6 790 1.72 2.14*

Length X QuadPts X Prior 2 395 1.95 27.91**

Latent X Length X QuadPts X Prior 6 790 2.08 2.15*

aLatent Distribution; bTest Length; cNumber of Quadrature Points; dPrior Distribution;
* p < 0.05, ** p < 0.01
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Table 9: Post Hoc Analyses (t-tests) for diff68% (C168% - 680).

Latent Ability Distribution X Prior Distribution Test Length X Prior Distribution
Prior Distribution Prior Distribution

Hypothesesa Normal Uniform Hypothesesa Normal Uniform

P.bi vs 1.1nml
ubi VS p. p s

P-bi vs Ilthlif
P.nrni VS llp s

P111111 vs Punif

Pps Punif

3.65** 3.81**

-5.39** -5.49**
-1.1 0 -1.8 7
-1.7 4 -1.6 8
-4.75** -5.69**
-6.49** -7.37**

P-61 vs PI 22 10.67** 12.34**

Test Length
6 1 122

11nml vs Punif -6.06** -2.77**

Quadrature Points X Prior Distribution
Prior Distribution Quadrature Points

Hypothesesb Normal Uniform Hypothesisa 1 0 2 *1Itest lengtha 8 0

1110 vs 11.241ength -42.24** -40.31**
1110 vs 118 0 -48.83** -46.61**

112*\ilength vs 118 0 -6.59** -6.30**

11nml vs Punif -9.86** -1..8 2 -0.62

Quadrature Points X Test Length within Latent Ability Distribution
Latent 0 Test Length Quadrature Points

Distribution Hypothesesb 6 1 122 Hypotheses 1 0 2 *qtest lengthb 8 0

Bimodal -28.16** -.45.34** 1161 vs 111 22 34.00** -2.92** 0.891110 vs 112*4 length
P10 vs 118 0 -30.09** -46.32**

11241ength vs 118 0 -1.93 -0.98

Normal 1110 vs1-124 length -20.92** -35.31** 1161 vs 111 22 37.83** -6.32** 0.77

1110 vs 118 0 -28.22** -40.30**

11-241ength vs 118 0 -7.30** -4.99**

Positive 1110 vs P-241ength -21.10** -36.69** P.61 vs 11122 23.32** -10.83** -1.31
Skew 1110 vs 118 0 -30.88** -42.12**

11241ength vs 118 0 -9.78** -5.43**

Uniform 1110 vs 1124 length -16.84** -35.24** 1161 vs 1112 2 39.50** -2.77** -1.2 6
P.10 vs 118 0 -19.50** -37.24**

112*N lengtn vs 118 0 -2.66** -2.00*

abi=bimodal, nml=normal, ps=positive skcw, unif=uniform; blength= test length;
* p < 0.05, ** p < 0.01
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Table 10: Post Hoc Analyses (t-tests) for diff95% (CI95% - 950).

Latent 0

Distribution Hypothesesa

Prior Distribution

Normal Uniform

Test Length

6 1 122

Test Length

6 1 122

Bimodal _21.11** -33.87** -19.43** -33.95**1110 vs 112*-4'length

1110 vs 1.18 -23.40** -34.67** -21.16** -34.75**

P.241ength vs P.8 0 _2.29* -0.80 -1.73 -0.80

Normal 1110 vs P.2*41ength _19.14** -29.27** -17.78** -28.79**

1110 vs 118 0 -23.78** -32.81** -21.80** -32.18**

11241ength vs 118 0 _4.65** -.3.54** -4.02** -3.39**

Positive 1110 vs 1124 length 20.17** -32.07** -19.08** -30.99**

Skew 1110 vs 118 0 -27.61** -35.07** -25.30** -33.74**

11241ength vs 118 0 . 7.44** -3.00** -6.22** -2.76**

Uniform P.10 vs P-2*4 length _12.60** -26.05** -11.73** -25.50**

1110 vs 118 0 -14.60** -27.15** -13.52** -26.62**

112*41ength vs 118 0 _2.00* -1.10 -1.79 -1.12

Prior

Distribution

Quadrature

Pointsa Hypotheses Bimodal

Latent

Normal

Distribution

Positive

Skew Uniform

Normal 1 0 1161 vs 11122 20.92** 1 7.2 6 11.92** 21.21**

2*4Iength -2.91** -2.03* -6.58** -2.20*

8 0 -0.13 0.08 0.32 -0.64

Uniform 1 0 P.61 vs 11122 24.54** 18.15** 13.10** 23.65**

2*41ength -1.61 -1.1 4 -5.18** -1.11

8 0 0.07 -0.03 0.13 0.10

alength= test length; * p < 0.05, ** p < 0.01

a...akar-1,v
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Table 11: Repeated Measures Analysis of RMSE(6) and Bias(8).

Source v 1 V', FRMSE FB i as

Latenta 3 396 7.70** 5.39**
..

Lengthb 1 396 4281.22** 0 .1 2.

QuadPtsc 2 395 176.33** 3.18*

Priord 1 396 526.39** 0.78

Latent X Length 3 396 6.91** 344*

Latent X QuadPts 6 790 6.44** 2.35*

Latent X Prior 3 396 1.28 1 .1 2

Length X QuadPts 2 395 302.98** 337*

Length X Prior 1 396 687.96** 0.55

QuadPts X Prior 2 395 17.35** 2.71

Latent X Length X QuadPts 6 790 4.14** 2.00

Latent X Length X Prior 3 396 8.53** 1.15

Latent X QuadPts X Prior 6 790 2.21* 377**

Length X QuadPts X Prior 2 395 12.91** 2.65

Latent X Length X QuadPts X Prior 6 790 1.69 2.37*

aLatent Distribution; bTest Length; cNumber of Quadrature Points; d Prior Distribution;

* p < 0.05, ** p < 0.01
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Table 12: Post Hoc Analyses (t-tests) for RMSE(8).

Quadrature Points X Prior Distribution within Latent Ability Distribution

Latent 9 Distributionb

Hypothesesa,b b i n m I p s unif

lAnml vs P.unif -17.13** -17.06** -24.50** -11.16**

410 vs 112*.\/ length 6.36** 10.60** 14.51** 6.12**

410 vs m8 0 6.19** 11.95** 16.51** 6.63**

112*qlength vs P-8 0 -0.17 1.35 2.00* 0.51

Quadrature Points X Test Length within Latent Ability Distribution

Latent 8

Distribution Hypothesesa

Test Length

6 1 122 Hypotheses

Quadrature

1 0 2 *4test

Points

lengtha 8 0

Bimodal 6.99** 14.11** 461 vs 4122 18.09** 58.52** 59.37**410 vs P-2*q length

410 vs 48 0 6.64** 13.91**

4241ength vs P8 0 -0.35 -0.20

Normal P.10 vs P-241ength 9.15** 14.36** P.61 vs 41 22 24.75** 72.45** 64.17**

410 vs 480 11.11** 15.41**

P.2*N length vs P-8 0 1.95 1.05

Positive P.10 vs 1-12*-4 length 11.31** 17.70** 461 vs 4122 17.72** 69.26** 50.29**

Skew P.10 vs 48 0 14.49** 18.53**

11241ength vs 48 0 3.18** 0.83

Uniform P.10 vs 424 length 6.53** 13.37** 461 vs 41 22 23.10** 54.80** 52.40**

P-10 vs 1.1.8 7.62** 13.94**

4241ength vs 48 0 1.09 0.57

Prior Distribution X Test Length within Latent Ability Distribution

Latent 8 Distributionb

Hypothesesb b i n m I p s unif

vs 1.1unif -12.08** -12.03** -17.28** -7.86**

P.61 vs 41 2 2 31.97** 37.94** 32.27** 30.64**
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Table 12: Post Hoc Analyses (t-tests) for RMSE(0) (continued).

Quadrature Points X Test Length within Prior Distribution

Prior Quadrature Points Test Length

Distribution Hypotheses 1 0 2 *4-test lengtha 8 0 Hypothesesa 6 1 1 / 2

Normal

Uniform

I-161 vs 11122 23.97** 7945** 70.41** 11-10 vs P-24 length

P.10 vs 118 0

P.2*41ength vs P.8 0

P-61 vs P-122 30.79** 86.80** 76.50** P.10 vs 1124 length

1110 vs 1180

P-241ength vs 118 0

8.28** 14.03**

9.79** 14.61**

1.52 0.58

8.13** 13.94**

9.80** 14.54**

1.67 0.61

alength= test length; bbi=bimod?1, nml=normal, ps=positive skew, unif=uniform; * p < 0.05, ** p < 0.01
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Table 13: Post Hoc Analyses (t-tests) for Bias(0).

Latent 0

Distribution Hypothesesa

Prior Distribution

Normal Uniform

Test Length

6 1 122

Test Length

6 1 122

Bimodal _1.0 1 0.07 -0.6 8 0.01P-10 vs 1124 length

1110 vs 118 0 -2.08 0.07 -2.44* 0.06

1-Q*1/length vs 118 0 -1.0 6 0.01 -1.7 6 0.05

Normal P.10 vs P.241ength -0.1 0 -0.2 4 -0.4 1 0.00

P.10 vs 140 0.42 -0.01 0.35 -0.0 0

P.24length vs 118 0 0.52 0.24 0.76 -0.0 1

Positive P.10 vs 1.124 length 0.4 2 -0.7 1 0.73 -0.8 3

Skew P.10 vs P.8 0 -4.31*"' -0.8 5 -3.99** -0.8 6

P-241ength vs P.8 0 -4.73** -0.1 4 -4.72** -0.0 2

Uniform 1110 vs 1-Q*1/ length 1.00 -1.0 0 0.04 -0.1 4

P-10 vs P.8 0 0.67 0.10 0.70 0.11

1-2*1/length vs N.8 0 -0.3 3 1.10 0.65 0.25

Prior

Distribution

Quadrature

Pointsa Hypotheses Bimodal

Latent

Normal

Distribution

Positive

Skew Uniform

Normal 1 0 P.61 vs NI 22 -2.05* 0.49 -3.10** 1.26

2*-41ength -1.40 0.40 -.3.74** -0.03

8 0 -0.76 0.24 -1.1 2 0.90

Uniform 1 0 1161 vs 111 22 -2.19* 0.30 -2.78** 0.69

V.'s/length -1.79 0.53 -3.66** 0.57

8 0 -0.74 0.10 -1.0 2 0.33

alength= test length; * p < 0.05, ** p < 0.01
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Table 14: Comparison of RMSEs based on EAP SEE and Empirical SEE with Observed RMSE.

Latent 0
Distribution

Test
Length

Quadrature
Pointsa Empb

Normal

EAP

Prior Distribution

Observed Empb

Uniform
EAP Observed

Bimodal 6 1 1 0 0.249 0.162 0.282 0.264 0.177 0.293
2 *qtest length 0.227 0.225 0.235 0.243 0.234 0.246
8 0 0.232 0.239 0.238 0.247 0.246 0.247

122 1 0 0.203 0.095 0.265 0.210 0.092 0.267
2 *qtest length 0.166 0.167 0.169 0.172 0.170 0.173
8 0 0.169 0.171 0.171 0.174 0.174 0.174

Normal 6 1 1 0 0.302 0.155 0.352 0.314 0.167 0.361
2 *qtest length 0.249 0.224 0.258 0.263 0.234 0.270
8 0 0.234 0.240 0.239 0.250 0.248 0.250

122 1 0 0.236 0.082 0.328 0.240 0.084 0.330
2 *gtest length 0.178 0.166 0.183 0.184 0.169 0.187
8 0 0.170 0.172 0.172 0.176 0.175 0.176

Positive 6 I 1 0 0.350 0.167 0.400 0.358 0.173 0.410
Skew 2 *qtest length 0.264 0.223 0.272 0.276 0.232 0.284

8 0 0.234 0.239 0.237 0.249 0.247 0.249

122 1 0 0.278 0.106 0.379 0.281 0.104 0.382
2 *gtest length 0.176 0.162 0.180 0.181 0.166 0.185
8 0 0.170 0.171 0.171 0.175 0.174 0.175

Uniform 6 1 1 0 0.276 0.204 0.311 0.303 0.224 0.321
2 *qtest length 0.246 0.245 0.267 0.272 0.259 0.275
8 0 0.240 0.250 0.261 0.266 0.263 0.267

122 1 0 0.234 0.121 0.280 0.248 0.130 0.284
2 *qtest length 0.180 0.178 0.188 0.190 0.183 0.192
8 0 0.177 0.181 0.185 0.187 0.186 0.188

alength= test length; bEmp=Empirical
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Figure Captions

Figure 1 a. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points

Interaction for Bimodal 8 distribution 61-item test length.

Figure lb. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points

Interaction for Bimodal 8 distribution for 122-item test length.

Figure lc. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points

Interaction for Normal 8 distribution 61-item test length.

Figure Id. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points

Interaction for Normal 8 distribution for 122-item test length.

Figure le. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points

Interaction for Positive Skew 8 distribution for 61-item test length.

Figure 1 f. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points

Interaction for Positive Skew 8 distribution for 122-item test length.

Figure lg. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points

Interaction for Uniform 8 distribution 6I-item test length.

Figure 1h. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points

Interaction for Uniform 8 distribution for 122-item test length.
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